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ABSTRACT

We have designed a cubic spline wavelet decomposition for the Sobolev space H_(I) where

I is a bounded interval. Based on a special "point-wise orthogonality" of the wavelet basis

functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform

will map discrete samples of a function to its wavelet expansion coefficients in O(N log N)

operations. Using this transform, we propose a collocation method for the initial value

boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform

and apply the collocation method to solve linear and nonlinear PDE's.
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1 Introduction

Wavelet approximations have attracted much attention as a potential efficient numerical

technique for the solutions of partial differential equations [1] - [6]. Because of their advan-

tageous properties of localizations in both space and frequency domains [8] - [10], wavelets

seem to be a great candidate for adaptive schemes for solutions which vary dramatically

both in space and time and develop singularities. However, in order to take advantage of the

nice properties of wavelet approximations, we have to find an efficient way to deal with the

nonlinearity and general boundary conditions in the PDE's. After all, most of the problems

of fluid dynamics and electromagnetics, which involve solutions with quite different scales,

are governed by nonlinear PDE's with complicated boundary conditions. Therefore, it is our

objective here to address these issues when designing wavelet approximations and numerical

schemes for nonlinear PDE's.

We will present a new wavelet collocation method designed to solve nonlinear time evo-

lution problems. The key component in this collocation method is a so-called "Discrete

Wavelet Transform" (DWT) which maps a solution between the physical space and the

wavelet coefficient space. The wavelet decomposition is based on a new cubic spline wavelet

for H_(I) where I is a bounded interval [11]. In order to treat the boundary conditions an ex-

tra boundary scaling function q_b(x) and a boundary wavelet _/_b(x) have been used. A special

"pointwise orthogonality" (see(3.7)) of the wavelet functions _bj,k(z) results in O(NlogN)

operations for the DWT transform where N is the total number of unknowns. Therefore, the

nonlinear term in the PDE can be easily treated in the physical space, and the derivatives of

those nonlinear terms then computed in the wavelet space. As a result, collocation methods

will provide the flexibility of handling nonlinearity (and, also the implementation of various

boundary conditions) which usually are not shared by Galerkin type wavelet methods and

finite element methods.

The rest of this paper is divided into the following five sections. In section 2, we introduce

the cubic scaling fu_actions ¢(x), Cb(x) and their wavelet functions ¢(x), Cb(z). A multires-



otution analysis (MRA) and its corresponding wavelet decomposition of the Sobolev space

H'_(I) are constructed using ¢(x),¢b(x)and ¢(x), Cb(x). Then, we show how to construct

a wavelet approximation for function in Sobolev space H'2(I) which the solutions of PDE's

will belong to. In Section 3, we discuss the fast discrete wavelet transform (DWT) between

functions and their wavelet coefficients. Ill Section 4, we discuss the derivative matrix D asso-

ciated with wavelet interpolations. In Section 5, we present tile wavelet collocation methods

for nonlinear time evolution PDE's. In Section 6, we give tile CPU time performance of the

DWT transforms and the numerical resntts of the wavelet collocation methods for linear and

nonlinear PDE's, and a conclusion is given ill Section 7.

2 Scaling functions ¢(x),¢b(x) and wavelet functions
Cgx)

Let 1 denote any finite interval, say I = [0, L] and L is a positive integer (for tile sake of

simplicity, we assume that L > 4), and H2(I) and H_o(I) denote the following two Sobolev

spaces with finite L 2 norm for up to the second derivatives, i.e.

H2(I) = {f(x),x e I] II/tOll2< ¢x_,i = o, 1,2} (2.1)

thus,

Hg(I) = {f(x) e H2(I)I f(O) = f'(O) = f(L) = f'(L) = 0}.

It can be easily checked [7] that Hg(I) is a Hilbert space with the inner product

< f,g >= f f"(x)g"(x)dx,

(2.2)

(2.3)

IIIflll= _f< f,f > (2.4)

provides a norm for H2o(I).

In order to generate a multiresolution for Sobolev space H02(l), we consider two scaling

functions, an interior scaling function ¢(x) and a boundary scaling function Cb(x) (see Figure



1)

l¢(x) = g,(x)= _ j=o

Cb(x)= ax_ 11xZ 3 3
2 +- 12 + +_(x-1)_--_(x-2) 3

where N4(x) is the 4th order B-spline [13] and for any real nmnber n

{x '_ if x > 0
71.

x+ = 0 Otherwise.

In a pair they satisfy the following two-scale relationship,

Lemma 1

4 4

¢(x) = Y_23(j)¢(2x-k)

Cb(x)

here

k=O

2

/__,¢_(2x)+ _ _k¢(2x- k)
k=O

/__1 = _,/3o = __3 fll = _.,/_2 134

(2.5)

(2.6)

(2.7)

We summarize some properties of ¢(x) and Cb(x) in the following lemma.

Lemma 2 Let ¢(x) and Cb(z) be defined as in (2.,5) and (2.6), then we have

(1) supp(¢(x)) --[0,4];

(2) supp(¢b(x)) = [0,3];

(3) ¢(x),¢b(x) E Ha(l);

1 1 1

(4) ¢'(1)=-¢'(3) = _, ¢'(2)= 0, ¢_(1)= _,¢_(2)=-_;

1 2 7 1

(5) ¢(1)= ¢(3)= _, ¢(2)= 3' Cb(1)= "i'2' ¢b(2)= g.

For any j, k E Z, we define

And for each j, let Vj

{¢j.k(x),O < k < 2JL--4,¢bd(x),¢b,j(L- x)}, namely

Vj = span{ Cj,k(z), 0 <_ k <_ 2 j L - 4, Cb,j(x), Cb,j( L -- x) }.

(2.s)

(2.9)

(2.10)

(2.11)

(2.12)

Cj,k(x) = ¢(2Jx - k), Cb,j(x) = Cb(2Jx). (2.13)

be the closure under norm Illflll in (2.4) of the linear span of

(2.14)
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Theorem 1 Let Vj,j C Z + be the linear span of (2.14), then Vj forms a multiresolution

analysis (MRA) for Y_(1) equipped with norm (2.4)in the following sense

(i) VoC¼ cv._c...;

(ii) clo_.o:(Uj_z+ v_)= Hg(/);

(iii) Ojez+ E = Vo; and

(iv) for each j, {¢j,k(x) = ¢(2Jx -k), Cb,j(x) = Cb(2Jx), Cb,j(L -- x)} is an unconditional

basis of _.

Proof. The proof for (iii) and (iv) is straightforward and omitted here. The proof for

(i) follows from (2.7) in Lemma 1. In order to prove (ii), we recall a familiar result on

interpolation cubic spline approximation for smooth functions taken from [14] and rewritten

for the proof of our theorem.

[]

Lemma 3 Let _ be the partition given by xi = ih, 0 < i < n, h = _ and ._(:c) be the cubic

spline interpolating f(x) G C4[a, b] at all points in _',

s(xi) = f(x,), 0< i < n,

and satisfying the following boundary conditions:

s'(a) = f'(a), s'(b)= f'(b). (2.15)

=

Then s(x) uniquely exists and

r = 0,1,2,3I1__(_)- f(_)llL_ --<e_llf(4)tlL_h4-_, (2.16)

s _ zwhere eo = 3-_, q = , f2 -- _, c3 : 1.

Proof of (ii) of Theorem I Let h = _ ' "_, a = 0 and b = L. Consider f(x) • C o (O,L), Since

C_(0, L) C C4[0, L] gl Hg(0, L), by Lemma 3, there is an unique cubic spline corresponding

4



the partition rr interpolating f(x).

have s(x) in Vj and then

From the fact that f(0) = f(L) = f'(O) = f'(L) = 0, we

such that

LI-4

s(x) = c_l¢b,j(x) + _ ck¢j,k(X) + CL-zCb,j(L -- x)
k=O

s(xi) = f(xi), 0 < i < 2jL

i
where L' = 2J L, xi = 2-7"

Finally, from (2.16) in Lemma 3 with 7" = 2 we have

Ill_- flit-_ II_<2)- fc2)ll-< c211f(4)lt/22j.

(2.17)

(2.18)

Therefore, as j _ _,llls- fill _ 0. This proves that C_°(0, L) C closHg(OjeZ+ Vj).

Then, Theorem 1 (ii) follows from the fact that C_(0, L) is dense in H02(0, L).

[]

To construct a wavelet decomposition of Sobolev space H2o(I) under the inner product

(2.3), we consider the followingtwo wavelet functions ¢(x), Cb(x) (see Figure 2) ,

¢(x) = -_¢(2x)+_-_¢(2x-1)-3¢(2x-2)E 1/1

24 , 6¢(2x) E,_b(_)- isCb(2x)- v,.

(2.19)

(2.20)

It can be verified that

¢(,t) = _b(,z) = 0, for all ,t E Z. (2.21)

Equation (2.21) will be important in the construction of the fast DWT transform later. And,

equations (2.19) and (2.20) imply that _/J(x) and _bb(x) both belong to V_. As usual, we define

the dilation and translation of these two functions

¢j,k(x) = _/)(2Jx - k), j >_ O, k = O,. . . ,nj - 3, (2.22)



Cg,j(x)= Cb(2Jx), ¢;,j(x) -- Cb(2J(L- x))

where n./= 23 L. For the sake of simplicity, we will adopt the following notations

(2.23)

_, rCj_,(x) = ¢t,j(x), 0j,,,_-2=/_b,_(x). (2.24)

So when k = -1,nd -2, Cj,_(x) will denote the two boundary wavelet functions, not tile

usual translation and dilation of _b(x). :

Finally, for each j _> O, we define

Wj = cto.sHg < Cj,k(X), k = --1,...,nj -- 2 > . (2.25)

Theorem 2 The Wj,j > 0 defined in (2.25) is the orthogonal compliment of Vd in Wj+,

under the inner product (2.3), i.e.

(1) Vj+, = Vj G Wj for j E Z +. Here q9 stands for Vk_LWj under the inner product (2.3)

and Vj+1 = Vj + Wj. Therefore,

(2) wj±wj+,,j c z+;

(3) Ho2(l) = Vo _)jez+ Wj.

Proof. ( 1) We only have to prove Vj ® Wj for j = O, namely, for 0 < l < L - 4, 0 < k < L - 3,

<¢(x-l),¢(x-k)> = 0 (2.26)

<¢(x-l),¢b(x)> = 0 (2.27)

<¢b(x),¢(x-k)> = 0 (2.28)

< Cb(x),Vb(x) > = O. (2.29)

Integrating by parts twice in (2.26) and using the fact that _b(x), ¢(x) E H2o(I) , we have

< ¢(x - O,¢(z - k) > = ¢"(x - O¢"(x - k) dz

¢"(_ - t)¢'(_ - k)loL f0L= - ¢(_)(x- t)¢'(x - k) dx

= - fo_ ¢(_)(_- O¢'(x - k) dx

= -¢(_)(x - 1)¢(x- k)10_ + _L ¢(_)(z-- t)¢(x -- k) dx

= ¢(_)(x- 0¢(x - k) dx.

6



Using equation (2.21) and the identity

¢(")(x)= _ j=o

where (_(x) is the Dirac-6 function, so we have

j_o (-1)J_b(J - (k - l)) = O"< ¢(x- z),¢(/- _) >= _ :

Equations (2.27) - (2.29) can be shown similarly to be true. So (1) follows from (2.19)

and (2.20) and the fact that dimVj = 2JL- 3 and dimWj = 2JL and dimVj+l = 2 j+l L- 3 =

(2 j L - 3) + 2 j L = dirnVj + dimWy;

(2) followsfrom (1);

(3) follows directly from Theorem 1 (ii).

D

As a consequence of Theorem 2, any function f(x) E Hg(I) can be approximated as

closely as possible by a function fj(x) E Vj = Vo ® Wo ® Wa .. . ® Wj for a sufficiently large

j, and L(_) has an unique orthogonal decomposition

fj(x) = fo +go + gl + "" + gj (2.30)

where fo E Vo, gi E Wi, 0 < i < j.

: 7



Approximation for function in H2(I)

Consider the following two functions

7 3 4
r/,(x) = 2x+ - 3x__ + _x+ - 5(x- 1)__ (2.31)

r/2(x ) = (1 - x)]_. (2.32)

? 2

For any function f(x) E H2(I), by the Sobolev embedding theorem we have f(x) E C1(I)

and, therefore, we can define the following boundary interpolation Ib,if(x), j > 0

Ib,jf(x) = oqq,(2JX) + c_2r/2(2/x) + c_37h (2J(L - x)) + a4r/2(2J(L - x)) (2.33)

such that

Ib,if(O)= f(O), Ib,jf(L) = f(L) (2.34)

Ib,jf'(O) = f'(O), Ib,jf'(r) = if(L). (2.35)

It can be easily verified that, in order to have Ib,jf satisfy conditions (2.34) - (2.35), we

have to take

if(0) ;3
a,- 2J+a 2 f(0)' a2 = f(0)

Og3_ if(L) _f(L), 0¢ 4 = f(L).
-- 2j+1 z5

(2.:36)

in many situations we do not have the values of derivatives if(0), if(L). However, they

can be approximated by finite differences using only the values of f(x). To preserve the

correct order of accuracy for a cubic spline approximation, we suggest using the following

approximations

f'(O) = -_ _ ckf(kh) + O(h _) (2.:37)
k=O

1 v

= --f _ c_f(L - kh) + O(t,_).
k=O

f'(L)

where h > 0 and p >_ 3. For p = 3, if we take

cl = :3

8
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3 1

c_=-_, c3= 5"

then s = 3 in (2.37), and thus, equation (2.35) is satisfied within an error of O(h3). Corre-

spondi.ngly, the coefficients ak, 1 < k < 4 for Ib,jf(x) become

P
!

oq - _ ckf(kh),
k=O

P

_3 = - Z: 4f(L - kh),
k=0

a2 = f(0) (2.38)

a4 : f(L)

where

, 1 3
Co= (_o- _),

I Ck

ck - 2J+l h' 1 < k < p.

Now we have f(x) - Ib,jf(x) E H_(I) and the decomposition (2.30) can be applied for

xi-') = k, k = 1,...,L- 1 (3.1)

, (-l)lL-1
and the values of f(x) oi1 _x k lk=l by

/_-') = f(x_-l)), k = 1,..., L- 1. (3.2)

L(z) = Ib,jf + fo + go + g,'" + gj

where fo(x) E Vo, gi E Wi, 0 < i < j.

3 Discrete Wavelet Transform (DWT)

In this section, we will introduce a fast Discrete Wavelet Transform (DWT) which maps

discrete sample values of a function to its wavelet interpolant expansions. Such expansion

with the wavelet decomposition will enable us to compute an approximation of the derivatives

of the function.

Interpolant Operator Iv0 in V0

Consider any function f(x) E Hg(l) and denote the interior knots for V0 by

(2.39)

it. Therefore, we can find an approximation L(x) for any function f(x) E H2(I) as close as

possible, provided that j is large enough, in the form of



The cubic interpolant Iu0f(x) of data {f_-l)} canbe expressedasfollows,

L-4

Iv0f(x) = c-,¢b(,) + _ c,.¢o,k(x)+ cL-._Cb(L-- x)
k=0

and Iv.0f(z) interpolates data f_-l), k = 1,---, L - 1, namely

(:3.:3)

ivof(x_-,)) = f(-l), k = 1,-.., L- 1. (:3.4)

Let B be the transform matrix between f(-1) = (f_-l),...

c = (__,,-.., _L__)_, i.e.

f(-1) = Bc

, fL(-211))7- and the coefficient

(3.5)

where
7 1

t_
6 3

1
6

B=

1
6
2
3

",,

1
6

°. "°

1 2

6 3
1

6

1

7
6 12

In order to obtain tile coefficients ck,-1 < k < L - :3 in (3.3), we have to solve the

triadiagonal system (3.5) which involves (5L) operations.

Interpolation Operator I_,,f in 14"./

Simiiarlyl We-can (iefine tt_e interpolation operator Iw, f(z) in !J,_,j >_ 0 for any function

f(z) in ltg(I). For this purpose, we choose the following interpolation points in I,

x_j)_ k+ 1.5
2J ' -1 _<k<nj-2 (3.6)

where nj = DimWj = 2J L.

It can be easily checked that the interpolation points {x(k-1)} for V0 in (3.1) and {x_ j)}

for Wj,j >_ 0 in (3.6) satisfy a "point-wise orthogonality"

Point OrUwgonaIity of {x_ j)} for j > i,-1 <_ k <_ nj - 2,

condition.

(J)
_bj,k(xk ) = 1

¢-Jx (0_ = O,-l<e<n_ 2ifi>0; I <f<L-lifi=-I_,k I ) -- -- -- -- -- -- • (3.7)

10
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This orthogonality condition will be crucial ill obtaining a fast Discrete Wavelet Trans-

form (DWT).

The interpolation I_,f(x) of a function f(x) E H_(I)in Wj,j >_ 0 can be expressed as a

linear combination of Cj,k(x) k = -1,...,nj - 2, namely

and

nj - 2

I_,f(x) = _ L,kOj,k(x) (3.8)
k=-I

-1 _< k < n j- 2.i .,x(j)_Y(,' k )= f(x_i)),

If we denote Mj as the nj-th order matrix which relates f(J) = (]j,-a,""
A "9

, fj,,_s_2) and

f(j) (f(x(j_),.. _.(x(J) _v then= "_dk nj-2lJ

f(J) = Mj_(J) (3.9)

where
1 _!

14

13 14

-± I
14

1

14

1

14

Mj _ ",, ",,

1 1
14

_i 1 _i
14 13

I
14

The solution of the coefficients fj,k, -I _< k _< nj -2 again involves solving tridiagonal system

(3.9) which costs (5nj) operations.

Now let us assume that the values of a

polation points {x_ j)} defined in (3.1) and

7_jf(z) E Vo @ Woe Wx " " ® Wj for J _>

Vjf(x) = L1,-ICb(X) "4-

function f(x) • H2o(I) are given on all the inter-

(3.6), we intend to find the wavelet interpolation

O, i.e.

L-4

E f-a,kOk(X) + ]-,,g-3Cb(L - x)
k=O

j nj -2

+ E[ E
j=O k=- I

J

= f_,(x) + E L(x)
j=0

(3.10)

11
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where

and

f__(z) = Ivof(x) • V0,

nj --2

fj(x) = __. fj,kCZk(x) • Wj,j > O,
k----I

Pyf(x_ -')) = f(x_-')), 1 <_ k <_ L-1

Vjf(x_ j)) (J)= f(x k ), j>O,-l<k<na-2. (:3.11)

Let us denote f = (f(-O, f(0),..., f(J))r the values of f(x) on all interpolation points, i.e.

f(-') - {f(x_ -1))}k=,i-',

f(J) = {f(x_J))}_-21, j >_ O,

and f = (_-(-,),_-(0),... ,_(a))'r the wavelet coefficients in the expansion (3.10)

_(__) A L-1= {f-',k}k=l ,

= 1.Jj,klk=-l, J > O.

Tlle following algoritlml provides a recursive way to compute all tile wavelet coefficients

t', and also the wavelet expansion (3.10) can be expanded as needed to include higher level

wavelet spaces W3, d + 1 < j < J' by adding only terms from tile higher wavelet spaces, i.e.

Wa+I , . . . , Wj,.

DWT transform

_ ---+ f

This d{rection of transform is straightforward by evaluating the expansion (3.10) at all

r,x(j)_ •the collocation points tk 1,3 >- -1 to obtain f. The "Point-wise Orthogonality" (3.7)

of tile interpolation points and tile compactness of suppCj,k(x) can be used to reduce the

number of evaluations.

Number of operations

Let N be the total number of collocation points and N = (L-1)+Ej=oJ nj = 2 J+1L-I. In

k 2JL,j >_ 0tlle evaluation of 7'af(,c_J)), values of ¢(x) and ¢(x) at dyadic points _7,0 < k <

are needed and they can be computed once for all for future use.

2

2
E
=

=

}

g
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Recalling (3.10) and the "orthogonality condition" (3.7) of the interpolation points, we

h ave

_Ojf(x_ -1)) -- f_,(x_-l)), 1 _< k _< L- 1

which needs 7(L - 1) (flops).

For each 0 _< j _< J, to compute "Pjf(x_i)), -1 <_ k <_ hi-2, it needs (5j+ 12),nj (flops).

Thus, it takes 7(L - 1) + _:J__0(5j + 12)nj = 2J+' L(5J + 7) + 5L - 7 _< 7NlogN(flops) to

compute the vector f.

Recalling that f = (f(-_),f(o),...

following steps.

Step 1

Define

,f(J))r, we proceed to construction of Pjf(x) in the

L-4

f-l(x) = Ivof (-1) -- L1,-ICb(X) + Z f-,,kCk(x) + f-l,L-3¢b(L- X),
k=0

so f_,(x)interpolates f(x) at the interpolation points x_-a),-1 _< k < L- 1, namely

f_,(x_ -')) - f(x_-')); (3.12)

Step 2

Define

no--2

fo(x) = Iwo(f (°) -(Iuof) (°)) = _ fo,l¢o,,(x) (3.13)

-- (o)_,_o-_.where (Ivof) (°) = {Iv0Jtx k _sk=-,

As a result of the "point-wise orthogonality" conditions (3.7) of the interpolation points,

we have¢03(x_ -1))=0,-1 <l<no-2, 1 <k_<L-l, thus

fo(x_ -')) = 0, 1 __ k __ L-1.

13



Sowehave

= f_,(z_ -')) : Iv0f(z_ -')) = f(z([ ')) 1 < k < L- 1
=.

(o) " (o) = f(o)= ivof(x(k °)) + (t'_ - (Ivof)k) = f(x(k°)). (3.14)

Equation (3.14) implies that function f_,(x) + fo(x) actually interpolates f(x) on both

interpolation points {x_ -')} for Vo and the interpolation points {x(k°)} for W0.

Step 3

Generally, we define for 1 _< j _< J

Ij( ) -- I_,(f (j) - (T_j_,f) (j)) (3.15)

n_i -2

= L,kOj, (x). (3.16)
k-----1

where (Pj_lf)_J) = Pj_,f(x_i)), -1 < k < nj- 2.

Again, as in step 2 we can verify that function f_,(x) + fo(x) +... + j_(x) interpolates

function f(x) on all interpolation points {x_-')}, ... {x_J)}. Especially, for j = J we have

7_jf(x) = f-l(x)+ fo(X)+" "+ fj(x), which will satisfy the required interpolation condition

(3.11).

Number of Operations.

For j = -1, the number of operations to invert (3.9) using Thomas algorithm to obtain

{]_-')} is 5L(flops). For 0 < j < J, the cost of computing the coefficients ]_J)in fj(x) =

Iwj(f (j) - (7)j-,f) (j)) = _-l<k<nj-'2fj,kCj,k(x) consists of three parts: (1) evaluation of

(T'j_,f)(j) = {T'i_,f(x_J))}-(5j + 7)hi(flops); (2) calculating the difference f(J)-(7_j_,f) (j)

- hi(flops); (3) inverting the matrix M s in (3.9)- 5hi(flops), totaling (5j + 13)hi(flops).

So the total cost of finding t" = 5L+ _=0(Sj + 13)nj = _=0(5j + 13)2JL < 6NlogN where

again N = 2 2+'L - 1.

Now let us go back to (3.10) to see the meaning of the wavelet coefficient {]j,k} in the

finite wavelet decomposition of space H_(I) for function f(x). For this purpose, we first take

14
!



a look at the wavelet coefficient in ttle finite wavelet decomposition of space L'2(I), i.e. in

the decomposition Vj = V0 • W0 • W1 "" q_ Wj. The orthogonality here is in the sense of L 2

norm not of H_(I) norm. For simplicity, we still use the notation ¢(x) and _(x) to denote

the scaling function and the wavelet function for this decomposition, while keeping in mind

that they have different definitions from those of H_(I) . Then, we can write the wavelet

coefficient fjk in the finite d,ecomposition as,

fjk = f f(x)¢;k(x)dx

where {_;k} is the dual wavelet basis of {¢jk} in Wj. i.e.{¢;k } is such a basis of Wj that

f dx =

where (_tk is the Kronecker symbol.

Using a similar method in [12], we can prove that

nj

Cjk y_. (J),/,, (3.17)
I=l

where c_ ) satisfies tlm estimate

I  l,-kl (3.18)

with 0 < A < 1 and K a constant.

In order to estimate f f¢, we quote the following theorem from Meyer's book [9].

Theorem A Let g(x) be compactly supported, n times continuously differentiable and have

n + 1 vanishing moments:

f?xPg(x)dx = O, for 0 _< < n.P
oo

Let eq0 < c_ < n, be a real number that is not an integer and f(z) E L 2. Then f(x) is

uniformly Lipschitz of order e_ over a finite interval [a, b] if and only if for any k E Z and

DE Z such that 2-Jk E (a,b),

I/f(x)g( 2ix - k) dx[ = 0(2 -(_+Oj) as j _ ec. (3.19)

15



From Theorem A, we can claim that tile absolutevalue of the wavelet coefficient ]fjk]

dependsupon the local regularity of f(x) in the neighborhood of tlle abscissa 2-Jk. More

precisely, if 2-Jk E (a, b), tile decay of ]fjk] depends upon tile Lipschitz regularity of f(x)

over tile interval [a,b], as tile resolution 2j increases. This property of tile wavelet coeffl-

cients allow us to detect tile location of the singularity of the function and, then, provide a

general knowledge of tile distribution of wavelet basis functions whose coefficients are larger

in magnitude than a given threshold. The detail can be referred to [11]. In the framework

of L 2, the wavelet function ¢(x) has at least 1 vanishing moment. Hence the property of tile

wavelet coefficients mentioned above is always valid.

Now we return to the wavelet coefficients {]jk} in (3.10). It can be easily checked that

7_ sin_ 4 _'_i¢(w)= (2-cosw)( __----_-_) e-T.
4

ttence = 7, which implies that ¢ has no vanishing moment at all (see Figure 3) . Since

the wavelet decomposition we considered here is ira tile space H_(I), therefore, tile decay

property for the wavelet coefficients J_jk ought to be related to the vanishing moments of the

second derivative of ¢(x) (seee Figure 4), not to those of ¢(x). We shall illustrate this more

precisely.

Let {¢;k} be tim dual basis of {¢jk} in Wa (recalling that the space we consider here is

Hg). It can be proven that for qJ_k, (3.17) and (3.18) still hold. Then we have

= f f"(x)(¢;k)"(z ) dx. (3.20)

Notice that spline wavelets ¢(z) and _Pb(x) defined by (2.19) and (2.20) are continuous

and their second derivatives have 2 vanishing moments. Then applying Theorem A to the

second derivatives of ¢(x) and _&(x) (namely, by taking g(z) ira Theorem A to be _"(x) and

_/J_'(x) respectively), we carl prove the following.

Lemma 4 Let 0 < e_ < i and f E H_(I). If the second derivative of tile function f is tlSlder

continuous with exponent cr, at x0 E I, i.e.

lf"(x) - f"(.r.o)l < (TIx - xol",x c (xo - 5,xo + 5) c I

t

16



for some_ > 0, then for any k E Z,j E Z + such that 2-Jk E (Xo - _/2, x0 + _/2),

lfj,kl= o(2++')J), as j (3.21)

Proof. We have, since ¢ and Cb defined by (2.19) and (2.20) are continuous and their

second derivatives have 2 vanishing moments, by Theorem A,

A

ILkl = I < f, ¢;k > [ < _ ]c_)t t < f, CJt > I + _'_ lc_)l t < f, Cjt > ]
2-JlE(xO--5,xo+5) 2-Jl_(xO-S,xo+6)

_< _ I'(_lk-qO(2-(_+')J) + _ KII'-klC = O(2-('_+')_)

_-_te(_o-S,_,o+S) It-kl>v }

where C in the first but last equation is a constant which depends on the second derivative

of f(x).

[]

Lemma 4 implies that the wavelet coefficients ]jk, j _> 0, still reflect the singularity of the

function to be approximated. In practice, when we solve PDE's using collocation methods,

we often use the values of the functions, not their derivatives. Therefore, in order to use the

wavelet coefficients to adjust the choice of wavelet basis functions, we have to establish a

relation between the magnitude of the wavelet coefficients ]j,k,j > 0 and f(z). Let us first

state the following result on the inverse of tridiagonal matrix from [15].

Lemma 5 Let A be a nxn tridiagonal matrix with elements a2, a3,''" , an on the subdiagonal,

bl,b2,'",b,, on the diagonal and c2,c3,'",c,_ on the superdiagonal, where ai, ci # O. Define

the two sequence {urn), {v,,_} as follows:

t/O

Un+l

1
= 0, ul = 1,u,,, = -_(a,,_-lum-2 + b,,_-aum-l)

Cm

1
= O, v,, -- 1, v,,_ = ---(b,,_+lv,,,+l + c,,_+2v,,_+1)

am+l

m > 2 (3.22)

re<n-1 (3.23)

where al and c,_+1 are arbitrary nonzero constants. Then A -_ = (oq,j) is given by

t_i, j = { -_-_ l-I _ i < j
ftlVO ak

-_l-[ _ i > j
_190 ak

(3.24)

17



Corollary.

estimates on Mj -1 = (ai.j),

K

<  lJ-;I (3.25)

where K = 1.1726 and a = 7 + lv/]-_92 - 13.928.

We delay the proof of (3.25) to the Appendix.

Theorem 3 Let f(x) E H02(0, L) and M = maxtlf(x)l and Lo, f(z) be its interpolation in

Wj defined in (3.8) and if for e > 0, - 1 _< ka < k'2 _< nj - 2

Let Mj be the interpolation matrix in (3.9), then we have the following

]f(x_J))[ _< c for k, < k _< k2.

then define

L,:(.)= E
-_<_k<_nj-2,k_[k_+t,_-t]

where 1 l(e) • _ _lo_.___ We have_ rnzn( 2 ' ]ogot/"

]j,l,¢j:,(x), (3.26)

[iw, f(x)- I_,f(x)[ < C(M)e (3.27)

where C(M) = 61<b--:i_l(a + M), K = 1.1726 and a = 7 + _ - 13.928.

Proof. From (3.9), we have

_(J) = M_-_ fO)

where t (j) = (j__,,..., ]j,,,-2)r, fO) = (f(x_),..., f(x_/_2) )'r, thus

nj

= ak,if(xi_2) , -1 <_ k <_n i - 2.
i=1

So we have

I/j,kl < K _ alk - i I If(xl_)2)l" (3.28)
i=1

For any given c > 0, we take g = min(nff2, - log e/log a). For k E [k_ + g, k2 - g], using

(3.28) we have

1 If(x_½)] + _ 1i/;,kl _< g[ _*k-i[ atk-i[ If(x!j))l]
Ik-il<_t Ik-il>t

.L

A

!
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1 1
<_ Ke _ alk_ il + MK _ c_lk_ i I

Ik-il<_t Ik-il>_

1 _,]_< 2Ke[l+ (1)-t-...+ (1)q+ 2MK[(1),,+I+...+ (;),_,

2Ke
1 -(-g) 1 -(_g)

, o_ 1
< 2Ke-- +2MKe--
- a-l- a-1

where C' = _27_1(a2/v + M).

Finally, we have

- I_,f(x)l- I E L,kCj,k(x)l
kE[k_ +t,ka -g]

<- }2 Ifj,kll_j,_(x)l<_c' _
kE[kl +g,k2 -g] ke[kl +t,k2 -g]

IOj,k(x)l

Note that in the last summation, only three terms will be nonezero for any fixed x, so

we have

Iiwf(x)- Iw, f(x)l < 3C'e = Ce

where C = g_27_1(a6** + M). This concludes the proof of the Theorem.

[]

Remark. As a consequence of Theorem 3, the coefficients fj,k of the wavelet interpolation

O) . _(J) 1 where the function f(x) is less thanoperator Iwjf(x) can be ignored if x (j) E [xkl+_,xk2_tj

some given error tolerance e. This procedure will only result in an error of O(e). For

= 10-m,g = 9, e = 10-s,g = 7. In the wavelet interpolation expansion (3.10), I_, is

used to interpolate the difference between a lower level interpolation "Pj__f(z) and f(x),

i.e. T'j__f(z)- f(z). Thus, the situation mentioned here will occur in larger region of the

solution domain as j becomes larger, avoiding adding unnecessary expansion terms Cj,k(x).

This fact will be used in the later section to achieve adaptivity for the solution of PDE's.

The idea of decomposing numerical approximations into different scales has been previously
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used successfully in the shcok wave computations with uniform high order spectral methods,

where ENO finite difference methods and spectral methods are combined to resolve the

shocks and tile high frequencey components in the solution, respectively [17].

We conclude this section with the following result which shows how to use wavelet coef-

ficient to estimate the data interpolated by I_j.

Theorem 4 Let I_,,f(x) and f(x) as in Theorem 4. And if for e > 0,-1 _< ka < k2 _< nj -2

then

Proof.

I]j,k] < _ for k_ < k < k2,

If(x(k3))[< 3e for k, + 3 _< k _< k2 -3. (3.29)

The proof follows from the definition of I_,f(x).

[3

4 Derivative Matrix D

The operation of differentiation of functions , which are given in terms of the wavelet ex-

pansion of (2.39), can be represented by a finite dimension matrix 7). Such matrix has been

investigated in [16] for wavelet approximation based on Daubechie's compactly supported

wavelets for periodic functions. The properties of matrix 73, especial]y of its eigenvalues,

affect very much the efficiency and stability of the numerical methods for the solution of

PDE's to be discussed in the next section.

V_ consider the derivative matrix which approximates the first differential operator

£u = u_ (4.1)

with the boundary condition

u(L) =0. (4.2)
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Because of the multiresolution structure of spaces Vj, i.e. Vj C _+1 and V0 Q W0 G'"

Wj = Vj+1. We can rewrite the wavelet interpolation uj(x) of (2.39) for function u(x) as _/

linear combination of Ib,j+lf(x) and basis in Vj+I, namely

Lt-4

uj(x) = Iu+lu(x ) + t_-lCb,j+l(x) + _ _kCJ+l,k(z) + _L,-3¢b,J+I(L -- z)
k=0

(4.3)

where L'= 2J+1L and Ib,j+lu(x)is defined in (2.33).

With the transformation ( = 2 J+l x, equation (4.3) becomes

_J(_)
LI-4

A ^ !

:= uj(x) = Ib,oU(() + u-lCb(() + _ t_kCk(_) + UL,-3¢b(L -- _).
k=0

(4.4)

Using the notations

u'= (_(1),_(2),...,_(L'-1)) _ • Rv-',

and equation (3.5), we have

where vector ub is defined by

u = (u(O),(u')r,u(L')) r • R L'+I

£1 = (_-1, riO,''', £tL'-3) T • RL'-1,

= B-_(u '- ub) (4.5)

ub = (Ib,oU(1),O,...,O, Ib,ou(L'-- I))w E R c'-I

and

_( ' ' ' ' o,...,O)u'Ib,ou(1) = Co, q, C2, c3, = 71U',

( ' ' ' -c;) u'Ib,ou(L' 1) 0,... ,0,-ca,-c2,-q,-- = = 72

Therefore,

71

0

6=B-1(I- i )u'=B-1ru '
0

72

71 E R L'-I

72 E R L'-1.

(4.6)
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whereI is the (L'- 1) x (L'- 1) identity matrix.

To obtain approximation to the derivativesof u(s¢), we differentiate equation (4.4) with

respect to _¢and evalute at (k = k,0 _ k _ L', i.e.

LI-4

= (Ib,oU)'(&) + _-1¢_(()+ _ fik¢'k(_k)--fiL'-a¢_(L'--_k)
k=O

= u',(_) + _;(_k) o < k < L' (4.7)

! !

where u_(sXk) denotes the first term in the first equation and u2(_% ) the rest. Recalling the

definition of Ib,ou(() in (2.33) and coefficients ak in (2.38) with h = 1 and j = J + 1, L = L',

we have

(_(o) )

*4(1)

u_(L')

2 ' ' 3u(0)Ek=o cku(k) - _' ,51
--- Y_k=02

0 0

= : = : U=A'U

0 0

, 7, c'ku(L'-- k)- Ek=o _a2

-2_k=op c'ku(L' - k) + 3u(L') k a4 _

with the four L' + 1 dimension vectors

(4.8)

a, = (2%- 3,24,2c._,2c;,0,...,0) 6 R L'+I

1 . i l ! l

52 -- _(Co, Cl,C2, c3, O,''',O) E R L'+I

_( ' , Ru+I¢_3 "-- O,''',O,c;,c2,CI,C;) e

: ,-. I ,_ I I -- RL'+I.¢_4 --(0,''', O, 2c'z, zca, zq, 2c o 3) E

On the other hand, using (3.5) we have

(_(o) )

_(1)

_(L')

0

= Hfi

0 0 0

! ! 0
4 2

_1 0 1_
2 2

0 _! 0
2

0 ... 0 0

• o °
• . ,

1 0 1
1 1

2 4

0 0 ... 0 0 0

fi
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= HB-1Fu '

= (0, HB-1F,0)u

Finally, combining equations (4.8) and (4.9), we have

(4.9)

( D_u:(O) )
D_u:(1) = 79'u (4.10)

U_ =

D_uj(L')

where the derivative matrix 79' is defined by

79' = A + (0, HB -1 F, 0). (4.11)

Converting to the x-derivatives, we have

,x0,/ 0,)D_:uj(xl) = 2J+1 DCu:(1) = 2J+'79'u (4.12)
Ux = i

D.uj(xg,) D¢uj(L')

i 0<i<Lqwhere xi = 2-7-4-r,

1
Let 7:) be the upper left L' x L' submatrix of 79', yn-r79 will be the wavelet derivative

matrix to differential operator (4.1) with boundary condition (4.2), namely, 79 will maps the

function values U(Xo), u(xl),..., U(XL,-,) to its derivatives u'(x0), ?ff(Xl),' "", ltt(XL'-,),

(x0)ix0/_'(x,) = 2:+,9 _(x,)
:

_'(xL,-,) u(xL,_,)

(4.13)

In Figure 15, we plot the eigenvalues of :D for L = 8, J = 0, 1,2, 3 which corresponds to

N = 8, 16, 32, 64. The eigenvalues come in conjugate pairs with two pure real eigenvalues.

The real part of all the eigenvalues are negative and except one eigenvalues, all the rest are

close the imaginary axis.

5 Adaptive Wavelet Collocation Methods for PDE's

In this section we consider a collocation method based on the DWT transform given in

Section 3 for time dependent PDE's. Let u = u(x, t) be the solution of the following initial
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valueproblem

ut+f_(u) =uxx+g(u),xE[O,L],t>O
u(o,t) = 90(0 (5.1)
u(L,t) = g,(t)

u(x,O) = f(x)

where only Direchlet boundary conditions are considered, however, the methods presented

here can also be modified to treat Von Neuman type or Robin type boundary conditions.

We use the idea of method of lines where only the spatial derivative is discretized by the

wavelet decomposition. The numerical solution ud(x,t) will be represented by an unique

decomposition in V0 O W0 ® "-" • Wj, J _> 0, namely

L-4

ua(x,t) = Ib,au(x,t) + fi_,,_,(t)Cb(x) + _ ft_,,k(t)Ck(X) + fi-,,z-3(t)Cb(L - x)
k=O

J nj-2

+ _[ _ aj,k(tl¢5,k(x)],
j=O k=-I

d

= u_,(_) + E us(_) (,_.2)
5=0

where Ib,au(x, t) given in (2.33) consists the nonhomogenuity of u(z, t) on both boundaries,

and the coefficients fij,k(t) are all functions of t. Using the DWT transform, we can also

identify the numerical solution uj(x,t) by its point values on all collocation "(previously

named interpolation ) points, i.e. {z(kj)} in (3.1) and (3.6), we put all these values in vector

u = u(t)= (u(-'),u(°),...,u(J)) '-

u = u(t), i.e.

where u (j) = {u(x(J),t)},l < k < L- 1 for j = -1;-1 < k < nj- 2, for j > 0.

To solve for the unknown solution vector u(t), we collocate the PDE (5.1) on all colloca-

tion points, then we have the following semi-discretized wavelet collocation method.

Semi-Discretized Wavelet Collocation Methods

u Jr + f_(uj) = uax_ + g(uj)[_=_.,),-1 < j _< J

_(o,_) = go(t)
_(L,t) 9,(_)

ua(x (J) a_ (J)= xk ,w = f(x = xk )

where 1 < k < L - 1 for j = -1;- 1 < k < nj - 2, for j > 0

(,5.3)

24
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Equation (5.3) involves total (2 J+l - 1)L + 2 unknowns in u two of which will be de-

termined by the boundary conditions and the rest are the solutions of the ODE system

subject to their initial conditions. In order to implement the time marching scheme for the

ODE's system (for example Runge-Kutta type time integrator), we have to compute the

, (JL
derivative term in (5.:3) f_(ua(x_J))) and ua_(x k ] in an efficient way. Let us only discuss

the first derivative which involves the computation of the nonlinear function f(ua(x, t)). For

this purpose we first find a similar wavelet decomposition as (5.2) for f(uj). For a general

nonlinear function f(u), this can be done quite straightforward using the DWT transform

in Section 3.

Computation of f_((x_ j)) = f_(ua(x_ i))

Step 1 Given u = (u(-1),u(°),...,u(J)) r, compute f(J)= {f(u_J))}, j > -1 and define

f = (f(-a),f(0),... ,f(J))r;

Step 2 Compute the wavelet interpolation expansion using DWT transform for f,

fa(.,t)
L-4

= Iuf + f_l,-l(t)¢b(x) + _ Ll,k(t)¢k(x) + ]-1
k=O

j nj -2

+ E[ E
j=O k=-I

,L-a(t)¢b(L - x)

, O)
Step 3 Differentiate (5.4) and evaluate at all collocation points _x k },j > -1,

(5.4)

L-4

I (j) _ (t_.l(x(J) _ i (j) ^ t= f-l,k(t)¢k(X k )-- f-l,L-a(t)¢b(L X (j)(Ib,jf) (x k ) + J-1,-lk ]tFb_, k ) "3V E -- )

k=O

J hi-2

+ E[ E ' (J)f,,t(t)'/',,t(xk )l.
i=O 1=-1

Cost of Computing the Derivatives.

For each single collocation point, it takes 7 + 5(J + 1) = 5J + 12(flops) to compute

f'j(x_J)). Therefore, the total cost of computing all derivatives is (SJ + 12)N _< 5NlogN.
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Again, _p'(x)and ¢'(x) at the dydic points _, 0 < k _< 2jL can be precomputed once and

for all.

Assuming that Euler forward is used to discretize the time derivative in (5.3), we obtain

a fully discretized wavelet collocation method.

Fully discretized Wavelet Collocation Method

?2jn+l

u3(0)
u3(L)

_O(x= x__)

-- U n- j + At[-fx(_:})+ u:L_+ g(_)]lx=_.,-i < j < J
= go(t'9
= g,(t")
= f(x = x_ j))

(5.5)

where 1 < k _< L- 1 forj = -1;-1 _< k < nj-2, forj _> 0 and t n = nat is the time

station and At is tim time step.

Adaptive Choice of Collocation Points

In equations (5.2) and (5.4), ua(x) and f(uj(x)) are expressed using the full set of

collocation points {x_J)}. As discussed in the remark after Theorem 3 of Section 3, most

of the wavelet expansion coefficients fij,k for large j can be ignored within a given tolerance

e. So we can dynamically adjust the number and locations of the collocation points used in

the wavelet expansions, thus reducing significantly the cost of the scheme while providing

enough resolution in the regions where solution varies much. We can achieve this adaptivity

in the following two ways.

Deleting Collocation Points

Let¢ > 0 be a prescribed tolerance and j > 0, g = g(e)= min(_,-log e/log a).

Step 1. First we locate the range for the index k,

such that

(k',,l',), ,(k',, '•.. l.,), m = re(j, _) (5.6)

I_j,kl_<_, k__ k _ l'_, i = 1,..., m. (5.7)
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Step 2. Following Theorem 3 and 4, we can ignore fi3,k in u.i(x ) in (5.2) for ki _< k <

lil i = I, • ..,m, ki = k_ + g + 3,1i = l_ - g- 3, namely we redefine us(x ) as

-1 <k<nj -2,k_K:,

where K;j = Ul_<i_<,,_[ki, I;].

Step 3. The new collocation points and unknowns will be

(J) (J)
{x k },uj(x k ),k=l,...,n-1 ifj=-l;ke{-1, • .., nj - 2}\/_;j.

Increasing Level of Wavelet Space.

Let e > 0 again be some prescribed tolerance, and if

ma l  ,kl > e (5.8)

where subscript n indicating the solution at time t = t n, then we can increase the number

of wavelet spaces Wj in the expansion for the numerical solution ud(x) in (5.2), say, up to

Wa,,d' > d.

Step 1 At t = t" if condition (5.8) is satisfied, let J_ > J and define a new solution vector

fi_, := (u(-'), u(°),..., u(J), u(a+o,..., u(J')) v

where for J + 1 _< j < d', u (j) = {_ju(x_J))}_J--_.

Step 2 Use fi_, on the right hand side of scheme (5.5) to advance the solution to time

step t TM and obtain solution u_ +_. Then, u_+_(x) = "Pj, u_ +_ E Vo @ Wo @'"@ Wj, will be

the new numerical solution which yields better approximation to the exact solution of (5.1).

6 Numerical Results

CPU Performance of DWT transforrn

The theoretical estimates of operations for performing the DWT transform in both di-

rection and the computation of derivatives at all collocation points are O(N log N) where N

is the total number of terms in the wavelet expansion (3.10).
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We take the function in (6.1) and define its wavelet interpolation expansion(3.10) for

L = 10, J = 2, 3,..., 9, the total number of terms (or collocation points) N = 2 J+l L - 1

are between 79 and 10240. In Figure 5 we plot the CPU time for the performance of DWT

back and forth in both directions ('o' in the Figure) and the computations of derivatives on

all collocation points ('+' in the Figure). Also drawn in the Figure is a straight line which

indicates a ahnost linear growth of the CPU timing up to 10k points.

Adaptive Approximation of Wavelet Interpolation Expansion

We consider function.

I a(x+1,0.3)

0

hi (x + 0.5, 5)
f(x) = 0

sin(5.x)hl(x - 0.25,O,25)
h [x-0.5"_2_-5T-)

if -1 <x<-0.7

if -0.7<x<-0.5-6

if -0.5-5<x<-0.5+6

if -0.5-1-5 < x < 0

if 0 < x < 0.5

ifO.5_<x_<l

(6.1)

where 5 = 0.01 and hi(x, a) is an exponential hat function and h2(x) is a step-like function

and they are defined as

-___) if lxl < a (6.2)ha (x) = 0 otherwise

and

{01 ifx<Oh,2(x) = _ fo t5( 1 - t) 5 dt otherwiseif0 < x < 1 (6:3)

First we construct the full wavelet interpolation expansion (3.10) 79jf(x) for J = 6, L =

40, the total number of wavelet functions (or the collocation points N ) N + 4 = (2J+_L -
. .......

1) + 4 = 2J+_L + 3 = 5123 (including four boundary functions in Ib,af(x)). In Figure 6, on -

: the top we plot the f(x) (solid lille) and 72)if(x) at non-interpolation points, at the bottom =

we have the absolute error in logarithm scale. In Figure 7, we plot the components f0 E V0

and gj(z) E Wj,O <_ j <_ 6 in Pjf(x) = Ib,yf(x) + fo + go + "'" + ga. We can see that only
E

higher frequency part is retained in higher wavelet spaces Wj (notice that the scales varies _
=

in different pictures). .=-
=
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Then, we use the procedureat the end of Section5 to filter out thosecoefficients,thus

deleting the correspondingcollocation points, ]j,k which are less than e in magnitude. In

Figure 8, we take • = 10 -s and the number of wavelet functions fj,k reduced to 289 with the

accuracy of the approximation (bottom curves) within order of e. In Figure 9, we plot the

solution at the remaining interpolation points and the expected clustering of the interpolation

points is seen at locations where the function changes more dramatically. In Figure 10, we

plot the magnitude of the wavelet coefficients fj,k,j _> -1 one level above another. High

density of the wavelet coefficients reflects the existence of high gradients of the approximated

function. In Figure 11, we take e = 10 .4 and the number of wavelet functions ]j,k reduced

to 206 with the accuracy of the approximation (bottom curves) within order of e.

Linear Hyperbolic PDE's

We consider the IVB problem of linear hyperbolic partial differential equation

{ ut+u_=O, O_<x_<lu(O,t) = 0 • (6.4)
u(x,0)=

where 5 = 0.05 and h2(/) is defined in (6.3).

We apply the collocation method with adaptive choice of the collocation points L =

20, J = 4. Second order Runge-Kutta method is usd for the time derivative. With every

10 iterations we change the number and locations of the collocation points according to the

criteria proposed at the end of Section 5. The cut-off tolerance e = 10 -s. The number of

collocation points involved fluctuates around 200 in contrast to the full set collocation count

which is 640 in this case. In Figure 12, we plot the numerical solution ('+') against the exact

solution ('o') at time t = 0.1. In Figure 13, we plot the errors in logarithm scale (notice the

y-scale starts at -2 which corresponds to an error of 10-2). Again, we see the automatically

clustering of the collocation points.

lnviscid Burger Equation
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Finally, weconsiderthe IVB problemof nonlinearhyperbolic partial differential equation

u2

u, + (-r)x = 0,
u(0, t) = given

u(x,0)= f(x)

-l<x<2

(6.5)

{ 7.sin(_rx) if -l_<x_< 1f(x) = 0 otherwise

In this case, we take L = 10, J = 6. Second order Runge-Kutta method is used for

the time derivative. With every 10 iterations we change the number and locations of the

collocation points according to the criteria proposed at the end of Section 5. The number

of collocation points involved fluctuates around 100 in contrast to the full set collocation

count which is 1280 in this case. The cut-off tolerance e = 10 -5. In Figure 14, we plot the

numerical solutions at time t = 0.05,0.1. The numerical scheme automatically puts more

collocation points near the high gradient (x=0) and the derivative discontinuity (x=l).

7 Conclusion

In this paper, we have constructed a fast Discrete Wavelet Transform (DWT) which enables

us to study collocation methods for nonlinear PDE's. The adaptivity of wavelet approxima-

tion is conveniently implemented through the examination of the wavelet coefficients. The

preliminary tests on the solution of PDE's indicates such an approach will be important

in large scale computation where the solution develops extremely high gradients in isolated

regions, and uniform mesh is not practical. Such investigations are actually being done for

reacting flows, the results will be reported in a separate paper.

30
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Appendix

Proof of (3.25). The proof is a straightforward application of Lemma 5. For Mj in

(3.9), we have (a2,a3,...,a,_) = ( 13'1 114, "'" ' 14'1 1), (b 1' b2, • -', bn) = (1, 1,--., 1) and

(c2, c3,...,c,0 = ( I 1 1 114,-_,'", 14, YS) where n = nj = 2JL. Therefore, the sequence

{u,,} in (3.22) satisfies the following relations,

Uo=0, ul =1, u2= 14, Ua=
2534

13 ' (A.1)

and for4 <m<n

u,,, = _,,,(-u,,___ + 14Urn_,) (A.2)

- _3 if m = n, _'m = 1 otherwise.where cm - 1-'_,

Recursive relation (A.2) is a finite difference of order 2 whose general solution is of the

following form

u,,, = e,,,(c,a ''-3 + c2fl ''-a) (A.3)

where c_ = 7 + 1_/]-_/2,/3 = 7 - v/]-_/2 are the two distinct roots of the quadratic equation

x 2-14x+1 =0,

and constant cl and c2 are chosen so equation (A.3) is valid for m = 2, 3.

Therefore,

Uo = O, ul = 1

u,,_ = e,,,(mc_"-3 + m/3-'-3), 2 _< m _< n (A.4)

where/q _--_(--i-U - 13 , > O.

Similarly, we can show that

v,_+, = O,v,, = 1, (A.5)

1),n = Cn-m+l(/21Ctn-2-m "4- 122/3n--2--m), for 1 < m _< n- 1 (A.6)
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and
1

vo = ---(,51d _-_+ 82fl'_-_).
al

where _1 = (13_-1),, > 0, 82 = (13_-1)_ < 0.
14 14

Finally, following (:3.24) in Lemma 5, we have the following estimates on the inverse of

Mj.

Denote ej, 1 < j < n as

1 ifj=l

13 if j - 2
ej =

1 if3 <j < n- 1

14 if j = n.75

Case 1: i<j and 1 <j <n-l,i= 1

Oli, j _ --eicn_j+ 1

(]_l Ot n-2-j -_ _2/_ n-2-j)

(Sla ''-4 + 82/3''-4)
(A.7)

So we have

<

where z = g < 1 and K1 - 1.1666.
O¢ --

14 an-2-J(/zl + tt2z '_-2-'/)

13 a'_-4(_1 - 82z '_-4)

14a(#1 +#2/z) 1

13 (81-82) a j-1

1

K1 alj-il

Case2: i_<j and 1 _<j_<n-l,2<i<n

(,1. i-3 + ,:Z_-3)(t,,._-:-J + ,_9 _-:-_)
OZi,j --_ --eicn-j+l Ci ((_1 oln-4 + (_2_ n-4)

(A.8)

Case :3: i_<jandj--n,i=l

1

ceid = --ei (8lan_ 4 + _2/_n_4)

(A.9)

Case 4: i_<jandj=n,2<i<n

_ (/z,c_i-3 + tL2/_i-3)
CCi, j _- --eiC i (0¢1c1(n-4 + (_2/_n-4) "

(A.10)
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Case 5:i>jandj=l,1 <i<n-1

C_i, j -- -- ej ¢n-i+l

Ft, a "-2-i + _2/_ "-2-i

(_iCt n-4 -_-_2]_ n-4)

(A.II)

Case 6: i>jandj=l,i=n

1

Cq,j = --e 3 (1_1 c_n_ 4 "_ O p )C2"in-4\
(A.12)

Case 7:i>jand2<j<n-l,1 <i<n-1

(t,,_ j-z + m/3_-3)(m. --_-i + m/_,,-_-q
ai,j -.= --ejcjcn-i+l (t_la n-4 "l- _2fl n-4)

(A.13)

Case 8: i>jand2<j<n-l,i=n

(]21 aJ -a +/_2//j-3)

oq,j = --% (_lan_ 4 + _2_n_4) .
(A.14)

For Cases 2 - 8, we call similarly obtain

K_
lai"/[ -< ml./-il' 2 _< i < 8

where K2 - 1.1726, Ks - 1.1607, K4 --" 1.1666, Ks - 1.1666,/(6 - 1.1607, Kr -" 1.1722 and

Ks - 1.1666.

Finally, if we choose K = 1.1726, then

K

la,,jl _< alj_il, 1 < i,j < n. (A.15)

This concludes the proof.
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Figure 1.Interior scaling functions _(z) (top) and boundary scaling function _b(z).
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Figure 2.Interior wavelet functions ¢(z) (top) and boundary wavelet function Cb(z).
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Figure 3. Fourier Transformations of _(z)
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Figure 4. Fourier Transformationsof _,"(x)
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Figure 5. CPU timing for Peffo_ng DWT (both_ directions) transformation ('o') and

computation of deriwtives ('+'), solid line- Linear fitting.
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Figure 6. Wavelet approximation of function (6.1) with L = 40, J = 6. Top - Exact

solution (solid line) and approximation ('o'); Bottom - absolute error in logarithm scale.

Total number of ]j,k is 5123.
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Fig_tre7. Components of_6f(z) - J'oq-go"{-""+ g6.From top to bottom- (a).fo;(b)-

(f)go(Z)- g,(x).Notice thatthe y-scMes are diITerent.
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Figure 8. Same as Figure 6, but with deletion of wavelet coefficient .fj,k whose magnitude

less that _ = 10 -s. Total number of jj,_ left is 289.
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Figure 9. Close up of top part of Figure 8, numerical solutions('+') at remaining collo-

cationpoints against exact solutions('o').
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Figure 10. The magnitude of remaining wavelet coefficient in Figm'e 8.
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Figure 11. Same as FiEure 8, but with e = I0 -s. Tota/number of/j,k left is 206.

46



1.2

0.8

0.6

0.4

0.2

0

|

I I I

-0.5 0 0.5 1

Figure 12. Adaptive collocation solution of linear PDE (6.4) at t = 0.1 with L = 20, 3 = 4

and error tolerance e = 10 -4. Total number of collocation points is around 200.
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Figure 14. Adaptive collocation solution of non-linear PDE (6.5) at _ = 0.05, 0.1 with

L = 10, J = 6 and error tolerance e = 10 -s. Total number of collocation points is around

100.
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Figure 15 Eigenvalues for the first derivative I) for L = 8, J = 0, I, 2, 3 whose sizes are

2JL = 8,16, 32, and 64, respectively.

5O









Form Approved

REPORT DOCUMENTATION PAGE OMeNo.o7o4-o,_

a_he_'_ng =_l_o madnta.t_bn 9 The da_a needed, and completing and rewew,ng :_e ,:31ie_on of lnformatIO_ Senti comments re_arding _his b_aen es_ m_e or an_ 3_her asoe_ .of lh=s

cg_hec'_iori of _nfot_nat_Oi_, _i_ci_d_rtg suggE%tlOO$ for re_lucJi_g th_ I_r_, IC CVa_h,r_cJ_O_ Hec!l_lOuar_erS Service5. D:_c'_or_te 1'or InfO_ei_cltlor I O!_gta_;0i's an_ c_eDcrtk I_ _ 5 Je_lE_rso _

O_v_s H,cjhwa_,, Suite t204, Arhngton, _'_, 22,_02-4302, and to the O_ice o_ Ma,_geme_: ar, cl _clge: %perwor_ Rech_cc_on P_je¢: (0704-018_ 'v_ ash_n.GTOn DC _0S(_]

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Jul_ 1993 Contractor Reoort
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

ADAPTIVE WAVELET COLLOCATION METHODS FOR INITIAL VALUE C NASl-19480

BOUNDARY PROBLEMS OF NONLINEAR PDE'S

G. AUTHOR(S)

Wei Cai

JianZhon8 Wang

7. PERFORMINGORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mall Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 93-48

10. SPONSORING _MONITORING
AGENCY REPORT NUMBER

NASA CR-191507

ICASE Report No. 93-48

|1. SUPPLEMENTARYNOTES

Langley Technical Monitor:

Final Report

Michael F. Card

1Za. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 64

To be submitted to SIAM

Journal on Numerical Anal-

ysls

12b. DISTRIBUTION CODE

I$,ABSTRACT(Max_um2_words)

We have designed a cubic spline wavelet decomposition for the Sobolev space H_(_)

where Z is :a bounded interval. Based on a special "point-wise orthogonality"-of the

wavelet basis functions, a fast Discrete Wavelet Transform (DWT) is constructed.

This DWT transform will map discrete samples of a function to its wavelet expansion

coefficients in 0(N log N) operations. Using this transform, we propose a colloca-

tion method for the initial value boundary problem of nonlinear PDE's. Then, we

test the efficiency of the DWT transform and apply the collocation method to solve

linear and nonlinear _DE's.

14. SU_ECTTERMS

wavelet

17. SECUR#_f CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES

52

16. PRICE CODE

A04
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)

Prescr,be,d by AN&_ _td Z39-_8

_'lJ.S. GOVERNMENT PRINTING OFFICE: 1993 - T_I-O64/g6061
298.102





National Aeronautics and

Space Administration
Code JTT

Washington, D.C.
20546-0001

Officiat Business

Penalty for Private Use, $300

BULK RATE

POSTAGE & FEES PAID

NASA

Permit No. G-27

POSTMASTER: tf Undeliverable (Section t58
Postal Manual) Do Not Return

E


